
Containers for HPC:
State of the Art 2022

Whitepaper

2
Figure 1 - Docker architecture

1. Introduction

This document presents an overview and evaluation of container technologies/solutions, with a focus on
their suitability for HPC systems and other scenarios where the demanding needs of performance and
security may hinder the adoption of new technologies and trends. The analysis takes into account the
following factors:

•	 The performance of containerized HPC jobs.
•	 Vulnerabilities from privilege escalations by unauthorized users.
•	 Integration with CI/CD workflows.

2.1	 Docker v 20.10.17

Docker was the first technology to put together all kernel mechanisms in order to provide a consistent
container framework. Docker is a technology not very well suited for HPC purposes, but it is included here
for interest purposes as it is the reference for all other container technologies.

2.1.1	 Architecture

Figure 1 illustrates the docker architecture. The docker engine, responsible for pulling images and
spawning containers on a host, follows the paradigm of a root-owned daemon. The dockerd daemon can:

•	 Pull/push images from/to a registry and store them locally.
•	 Build images from local FS or from a recipe file.
•	 Spawn containers from an image.

2. Container technologies for HPC

© 2023 Do IT Now S.a.r.l. logo is protected by the rights of intellectual and industrial property, of which Do IT Now is holder.

3

Nevertheless, only the root user or a user belonging to the docker group can interact with the daemon.
Being owned by root, dockerd can leverage all privileged namespaces in order to provide very advanced
features like:

•	 Create virtual networks devices, or even virtual networks interconnecting privately all the
containers in a host.

•	 PID abstraction, so containerized processes have their own PIDs separated from the host.

•	 Resource limitation through cgroups. Docker can control the amount of resources available
to a container.

•	 Create and build images. As mentioned before, this feature usually requires privileges and
the use of mount namespace, bind and overlay mounts.

2.1.2	 Relevant features

•	 No-new-privileges parameter.

•	 Docker on rootless mode. SDocker offers the possibility of running the daemon as a non-root user.
Rootless mode executes the Docker daemon and containers inside a user namespace and uses some
specific setuid binaries to map users from the created user namespace to the root user namespace.
As a counterpart, the set of features available through this mode is limited. Still, the rootless solution is
more secure than root-owned daemon from a vulnerability exposure point of view.

2.1.3	 Limitations

The following limitations must be highlighted when thinking about the suitability of Docker on
HPC environments.

•	 Any docker user can easily escalate to root.

•	 Docker is difficult to integrate with some workload managers.

2.2	 Singularity v3.10.2

Singularity started in 2015 as an HPC alternative to Docker. Sylabs was founded in 2018 to support
Singularity, but in May 2021 they forked the project into SingularityCE. In November 2021 the Singularity
open-source project joined the Linux Foundation and was renamed Apptainer. While both projects were
similar at the start, they have now diverged.

2.2.1	 Architecture

Figure 2 illustrates the architecture of Singularity. Singularity is based on root owned setuid binaries.
Singularity deploys a set of binaries that can be called by any user, but they are executed with root
privileges. As such, they have the right to execute privileged operations.

© 2023 Do IT Now S.a.r.l. logo is protected by the rights of intellectual and industrial property, of which Do IT Now is holder.© 2023 Do IT Now S.a.r.l. logo is protected by the rights of intellectual and industrial property, of which Do IT Now is holder.

4

Singularity is strongly focused on HPC. As such, it brings a specific set of features mostly relevant on
HPC environments:

•	 Strong focus on reproducibility: cryptographic signatures, an immutable container image format,
and in-memory decryption.

•	 Can be used with most workload managers out of the box.

•	 Facilitates the integration of GPUs, high speed networks, and parallel filesystem.

2.2.2	 Relevant features

•	 Accessible to unprivileged users by design. Singularity security model is based on the idea of
untrusted users to run untrusted containers. The processes in the container will run as the calling user.

•	 Full rootless mode. Singularity supports running containers without using the setuid binaries. Instead,
user namespaces can be used for those environments which need to reduce the surface of attack to
the minimum.

•	 Fakeroot feature. Singularity offers this feature to emulate the root user when launching containers
or building images.

2.2.3	 Limitations

•	 Limited interoperability with Docker and OCI.

•	 Divergence of forks. As SingularityCE by Sylabs and Apptainer by the Linux Foundation diverge, the
set of features, formats, standards, and performance may diverge, which complicates the situation to
the end user.

Singularity was renamed Apptainer when it joined the Linux Foundation project. At the time of the writing,
Apptainer just released the version 1.1.0. The release notes of this version clearly indicate how the main
effort of Apptainer is being put towards getting rid of the setuid binaries architecture and perform fully on
unprivileged mode by relying on user namespaces, without hindering the performance.

This strategy translates into the following technical differences with Singularity:

•	 Apptainer no longer installs a setuid-root portion by default, as full-rootless is the intended mode
of operation.

2.3	 Apptainer v1.1.0

© 2023 Do IT Now S.a.r.l. logo is protected by the rights of intellectual and industrial property, of which Do IT Now is holder.

Figure 2 - Singularity architecture.

5© 2023 Do IT Now S.a.r.l. logo is protected by the rights of intellectual and industrial property, of which Do IT Now is holder.

2.4	 Podman v4.2.0

Podman, developed and maintained by Red Hat, is a lightweight runtime for managing and running
docker without the overhead of the docker daemon. Podman started in 2018 and it has lately gained
some attention as an alternative to docker to let users run containers without the need of privileges.

2.4.1	 Architecture

Figure 3 illustrates the way Podman works. Podman runs without daemon, and neither uses setuid
executables. Instead, the tool is intended to be run as a non-root user and uses sudo only on those
precise operations where root escalation is required.

Podman can provide the following operations to unprivileged users:

•	 Pull/push images from/to a registry and store them locally.
•	 Build images from local FS or from a recipe file.
•	 Spawn containers from an image.

As we have seen with other technologies, some parts of the workflow in order to build images or even
spawn containers require some sort of privilege. Podman neither uses a root daemon, nor uses setuid
executables. Instead, it uses some extra libraries and packages in order to work around these issues.

Figure 3 - Podman architecture vs Docker architecture

•	 They have greatly mitigated the performance impact of using FUSE filesystem (required for mounting
SquashFS without privileges) by developing a parallel multithreaded version of SquashFS with FUSE.

•	 Added the ability to use persistent overlay and --writable-tmpfs without using setuid-root.

•	 Extended the fakeroot feature to be used even if subid and subgid mappings have not been set.

•	 Encryption is not yet supported. Container signature and verification requires Apptainer
to be installed in setuid mode.

6© 2023 Do IT Now S.a.r.l. logo is protected by the rights of intellectual and industrial property, of which Do IT Now is holder.

2.4.3	 Limitations

•	 Performance issues. The use of user namespaces requires passing by a number of additional libraries
that implement some features in user space that are usually implemented in kernel space (e.g., the
network or the filesystem). This may pose a performance penalty, as FUSE is usually less performant
than its kernel space counterparts.

•	 Issues with NFS home directories. Podman does not support container storage over NFS, which may
pose a problem for all those installations which have HOME directories on an NFS, as the HOME is the
place by default in which user images are stored.

2.5	 Sarus v1.5.1

Sarus is a container technology specifically purposed for HPC environments but keeping compatibility
with OCI standards. Sarus is developed and maintained by CSCS, the Swiss National Supercomputing
Center. First released in 2018, Sarus benefited from the experience gained at CSCS working with Shifter,
another technology for HPC containers now abandoned.

2.5.1	 Architecture

Figure 4 illustrates the architecture of Sarus. Sarus is based on a root owned setuid binary. This binary
can be called by any user, but it is executed with root privileges required to launch the container without
user namespaces or the use of workarounds in user space. As it is the case with Singularity’s default
mode, user namespaces are not used.

Sarus does not implement any image building functionality. This means that Sarus cannot be used to
build containers. Instead, Sarus follows an approach in which it delegates the image construction to
docker (or any other OCI image builder).

2.4.2	 Relevant features

•	 No daemon required. Podman can be deployed as a tool and does not require any daemon
running on the hosts.

•	 Full rootless mode. Podman provides, even with certain constraints and limitations, a full rootless
mode that may cover up most of the container uses cases.

•	 Powerful additional tools. Podman makes use of very powerful extra tools like skopeo (in order to
inspect remote images and manipulate the images layer by layer) and buildah (in order to create
and build images).

Figure 4 - Sarus architecture

7

2.6	 Other container technologies

The following list contains some interesting technologies in the field. They were not adequate enough for
an in-deep analysis, but it is convenient to know about them within the container landscape:

•	 Charliecloud: An ultra-light, full-rootless container technology developed at Los Alamos
National Laboratory. Good for ultra-secure environments, it uses user namespaces but it requires
packing container images in a compressed file format, in order to avoid mounting operations that
require privileges.

•	 Enroot: A small container engine based on transforming traditional containers into SquashFS
sandboxes. It uses several pre-startup hooks to set HPC infrastructure like Nvidia GPUs and
Mellanox networks. The features implemented are too limited to be counted as a viable alternative
to Singularity or Sarus, but it may be the right alternative for some specific projects with strict
performance requirements and heavily relying on Nvidia GPUs and Mellanox IB.

•	 Udocker: A python wrapper that encapsulates multiple technologies aiming to run containers in full
rootless mode. It allows to decide the container engine used underneath. Singularity, runc, or PRoot
are some of the engines available.

© 2023 Do IT Now S.a.r.l. logo is protected by the rights of intellectual and industrial property, of which Do IT Now is holder.

2.5.2	 Relevant features

•	 Support for container customization through hooks. Sarus allows containers to be customized by
other programs or scripts leveraging the interface defined by the OCI.

•	 OCI compliance. Sarus focuses on OCI compliance and bases its image retrieval toolchain on external
tools like Skopeo, which are much more optimized and focused on this workflow. As result, Sarus is
much more compatible with not only Docker registries, but also with third party registry providers like
Gitlab, JFrog, or Harbor.

2.5.3	 Limitations

•	 No build features. Sarus delegates all the build phase of the container’s workflow to external tools,
and assumes the images have been already built, and that the users are sure to have available either
an external repository or a build environment. Whether this is a smart strategy or a limitation in the
tool is left to the reader’s discretion.

•	 User synchronization. Sarus keeps, for its internal purposes, its own copy of /etc/password and /etc/
group files. It is necessary to keep both copies (the host copy and the sarus copy) synchronized, either
using a periodic cron script or any other mechanism. This adds a small layer of complexity to the
solution administration.

Sarus keeps the functionality to the minimum, managing the images locally, creating an OCI bundle,
and finally launching the container in the cluster. In order to implement features like pulling images from
remote registries or manipulating them, Sarus deploys as part of its suite additional tools like Skopeo, or
umoci, just like Podman does.

2
*All trademarks, logos and brand names are property of their respective owners.
© 2023 Do IT Now S.a.r.l. logo is protected by the rights of intellectual and industrial property, of which Do IT Now is holder.

www.doit-now.tech

Contact us at info@doit-now.tech

Discuss your HPC needs today

8

During the previous sections we have analyzed functional and non-functional characteristics for
the five candidate technologies: Docker, Singularity, Apptainer, Podman, and Sarus. We extract the
following conclusions from this analysis:

•	 Docker and Podman can be considered general purpose container technologies, with features and
characteristics not specifically tailored for any computing environment, whereas Singularity and
Sarus are strongly focused on HPC environments, and both best deliver on HPC at the expense of
having a narrower catalog of features.

•	 Docker and Singularity/Apptainer are more mature technologies than Podman and Sarus. Both
Docker and Singularity started earlier, have a more developed product with companies backing
it, and commercial support models. Podman, even if it’s a product developed and maintained by
RedHat, does not have yet the set of features that the other two have, and Sarus, developed by
CSCS, does not offer yet any official support.

•	 Singularity/Apptainer and Sarus, being both focused on HPC environments, have followed during
the past years opposite strategies to develop their product. Singularity/Apptainer has opted for
developing their own ecosystem, aiming towards tailoring the product for best performance on
HPC. Sarus, on the other hand, has opted for full integration with the Docker and OCI ecosystem.

•	 Singularity and Apptainer are already starting to diverge and appear as differentiated products.
Their main differentiation at this point is their opposite strategies concerning the use of unprivileged
user namespaces.

•	 Lately, the container ecosystem has exploded, and the OCI initiative has gained momentum, so all
technologies realize the importance of complying with OCI standards.

•	 Concerning security aspects, Podman is the simplest and best architecture from the security
point of view, as it does not run any root-owned daemon nor setuid executables. Apptainer also
is pursuing this goal by setting as default mode the full unprivileged mode. Docker implements
many security features, but their architecture and model makes it unsuitable for multi-tenant
non-privileged platform as those of HPC. Concerning CVEs, mature technologies like Docker and
Singularity have many more vulnerabilities than recent technologies like Podman and Sarus,
probably due to being more years under scrutiny and a wider set of features, which translates to
more surface of attack.

3. Conclusions

http://www.doit-now.tech
mailto:info%40doit-now.tech?subject=

